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Abstract 

 
The task scheduling problem has received a lot of attention in recent years as a crucial area for 
research in the cloud environment. However, due to the difference in objectives considered by 
service providers and users, it has become a major challenge to resolve the conflicting interests 
of service providers and users while both can still take into account their respective objectives. 
Therefore, the task scheduling problem as a bi-objective game problem is formulated first, and 
then a task scheduling model based on the bi-objective game (TSBOG) is constructed. In this 
model, energy consumption and resource utilization, which are of concern to the service 
provider, and cost and task completion rate, which are of concern to the user, are calculated 
simultaneously. Furthermore, a many-objective evolutionary algorithm based on a partitioned 
collaborative selection strategy (MaOEA-PCS) has been developed to solve the TSBOG. The 
MaOEA-PCS can find a balance between population convergence and diversity by partitioning 
the objective space and selecting the best converging individuals from each region into the 
next generation. To balance the players' multiple objectives, a crossover and mutation operator 
based on dynamic games is proposed and applied to MaPEA-PCS as a player's strategy update 
mechanism. Finally, through a series of experiments, not only the effectiveness of the model 
compared to a normal many-objective model is demonstrated, but also the performance of 
MaOEA-PCS and the validity of DGame.  
 
 
Keywords: Bi-objective game, cloud computing, many-objective optimization algorithms, 
task scheduling. 
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1. Introduction 

With the global cloud computing market booming, cloud computing is becoming 
increasingly popular due to its virtualization, hyper-scale, and high-reliability features. It has 
played a significant role in the growth of the digital economy and will continue to do so [1]. 
The rapid development of cloud computing has also led to an increasing number of enterprises 
choosing to go to the cloud and use it [2], which inevitably leads to an increase in demand for 
cloud resources. Although cloud service providers can provide abundant computing resources, 
the diverse requirements of tasks make it exponentially more difficult to schedule tasks in a 
cloud computing environment [3]. Irrational scheduling schemes can easily result in low 
resource utilization, serious energy wastage, and so on. Therefore, the study of task scheduling 
is significant and worthwhile [4]. 

In cloud computing, the main parties involved in scheduling are the user and the cloud 
service provider. And the task scheduling is essentially a mapping between the tasks submitted 
by users and the virtual machines owned by the cloud. In other words, users submit tasks to 
the cloud, and the scheduler is responsible for assigning tasks to virtual machines with different 
attributes according to different users' needs in terms of time and cost, etc. Of course, while 
satisfying users' needs, the scheduler also ensures that the resources in the cloud resource 
system are used in a rational manner to the maximum extent possible. Recently, considerable 
researches have been devoted to task scheduling in the cloud environment [5]. In order to 
optimize the maximum completion time required to schedule tasks, Mohamed et al. [6] 
employed differential evolution to enhance the moth search algorithm's lack of mining 
capability, while Xiong et al. [7] devised a genetic algorithm based on Johnson's rule. These 
articles only consider scheduling time. However, users are also concerned with objectives such 
as cost and task completion rates.  

In order to improve the user's service experience as much as possible, Bezdan et al. [8] 
proposed a hybrid bat algorithm to optimize scheduling cost and time, which can deal with the 
lack of search capability of the traditional algorithm. To improve task scheduling performance, 
Zhang et al. [9] first classify tasks and then dynamically match them with virtual machines. 
This method minimizes user payment costs and task scheduling time. Youne et al. [10] set 
priorities for tasks and use the proposed RAO algorithm to find execution time optimal 
solutions for tasks based on user demand scheduling policies. Tong et al. [11] provided an 
efficient scheduling solution by exploiting the adaptive learning capability of the dual-depth 
Q-network to shorten the response time while guaranteeing task completion. As can be seen, 
these studies only design objectives from the perspective of serving users. Nevertheless, this 
is a rather single perspective to consider, and the optimization objectives are not 
comprehensive enough. 

Unlike the quality of service that the user is concerned about, service providers care more 
about whether their resources are well utilized and whether energy is wasted [12]. Therefore, 
to solve the problem of excessive energy consumption of cloud resources, Hussain et al. [13] 
developed a two-stage scheduling approach, which can successfully cut the system's energy 
use while achieving the task deadline restriction. A novel energy-aware service scheduling 
technique was also put forth by Zhu et al. [14] with the intention of lowering energy usage.  
Marahatta et al. [15] solved the problem of low resource utilization and high energy 
consumption that easily occurs by merging heterogeneous tasks and virtual machines in a 
virtual trick most-available scheduling scheme. Yuan et al. [16] presented a multi-objective 
optimization algorithm which can optimize the profit, energy cost, and maximize the benefits 
of the service provider while performing all tasks. 
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However, it is too restrictive to design the objectives for only one of the parties involved 
in the task scheduling. Once scheduling has started, both the service provider and the user have 
their own motivations [17]. And we find that all objectives must be optimized concurrently in 
order to arrive at a mutually satisfactory scheduling solution. To reduce scheduling time as 
well as increase throughput, Attiya et al. [18] combined improved manta ray foraging 
optimization with the salp swarm algorithm to propose a new hybrid swarm intelligent 
optimization method. Hu et al. [19] formulated the scheduling problem as a non-linear mixed 
integer programming problem that can effectively balance the time and energy consumption 
between conflicts and offer a real-time scheme. To reduce time and energy usage, Emami et 
al. [20] introduced the new pollination strategy in the sunflower optimization algorithm to find 
a scheduling solution. Zade et al. [21] created a method for fuzzy-based task scheduling to 
optimize the total time and load balancing ratio considering security issues and energy costs. 
Shukri et al. [22] improved the multi-verse optimizer by saving some of the better solutions to 
feed back into the algorithm and using this algorithm to reduce scheduling time and improve 
resource utilization. 

Nevertheless, these researches continue to simply take into account the conflicting between 
the objectives, ignoring the conflicting interests of the participants in the actual scheduling 
process. To address this problem, we introduce game theory. Game theory [23] is the process 
by which individuals or organizations choose a strategy and implement it in a strategy set, 
either simultaneously or sequentially, once or repeatedly, under certain rules, in order to 
achieve the appropriate outcome [24]. Of course, each action of a participant in a game is 
designed to increase their own payoff. Whereas, there may be more than one payoff function 
for each player in the game, so it becomes a difficult task for the players to balance their multi-
objectives during the game [25]. 

Evolutionary algorithms [26], as a mature and highly robust and widely applicable global 
optimization method, excel at balancing conflicts between multiple objectives to provide 
decision makers with a set of solutions. Simultaneously, it has been applied in a variety of 
fields for the past few years, like recommendation systems [27], cloud computing [28], 
medical diagnosis [29], and so on. However, only 2-3 objectives can be solved using standard 
evolutionary algorithms, and when the number of objective dimensions increases, multi-
objective optimization algorithms will generate a significant number of non-dominated 
solutions, which can make it tough for the algorithm to select the top solution among a bunch 
of solutions [30]. Therefore, designing suitable selection strategies to reduce the selection 
pressure is also a major problem that we need to address. 

Based on the above analysis, we need to address two key challenges: 1) how the scheduling 
model should be designed to reflect the conflicting interests of users and service providers, 
and 2) how to create an appropriate algorithm to solve this model. To address these challenges, 
the scheduling process is formulated as a game. In the game, users and service providers 
sequentially change their strategies to improve and balance their two payoff functions. Then, 
based on the game model’s characteristics, we propose a many-objective evolutionary 
algorithm based on a partitioned collaborative selection strategy (MaOEA-PCS), by which 
players can obtain a scheduling solution that can satisfy both bi-objective. The following is a 
summary of this paper's main contributions. 

(1) The task scheduling problem is modeled as a game and we design the task scheduling 
model based on a bi-objective game (TSBOG). It considers both the energy consumption and 
resource utilization concerns of the service provider and the cost and task completion rate 
concerns of the user. 
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(2) A many-objective evolutionary algorithm based on a partitioned collaborative selection 
strategy is proposed to solve this TSBOG. Then we design a new crossover and mutation 
operators based on the dynamic game as the players' strategy update mechanism. 

The rest of this paper is structured as follows. In Section 2, the basic game model and the 
specific payoff functions for each player are defined. Section 3 gives a many-objective 
evolutionary algorithm based on a partitioned collaborative selection strategy, detailing the 
partitioned collaborative. The simulation experiments in Section 4 show the effectiveness of 
the suggested algorithm and strategy. Section 5 concludes our work and provides an outlook 
for the future. 

2. System Model 
In the section, we provide a task scheduling model based on a bi-objective game and design 
individual decision models for each player. The model takes multiple objectives that players 
focus on as the payoff functions and specifies these objectives.  

2.1 Basic Game Model 
Fig. 1 illustrates a cloud environment consisting of users, virtual machines, and data centers, 
where the user generates a large number of complex computational tasks. However, many 
computational tasks are difficult to complete locally due to the user's limited local computing 
power. Therefore, users need to submit tasks to the cloud, which achieves higher 
computational efficiency by allocating the tasks to appropriate virtual machines. Whereas, as 
mentioned in the introduction, due to the diversity of task requirements, it is not 
straightforward to select a suitable VM for the tasks while satisfying the interests of both the 
user and the cloud provider. Consequently, we will apply game theory to mitigate the 
conflicting interests between the user and cloud service provider to maximize the players’ own 
interests. Users and service providers take on the roles of players and adjust their game 
strategies against each other to determine the final scheduling solution. 
 

 
Fig. 1. The schematic of task scheduling 

Data center 1

Payoff functions

Submit task

Task 2 Task 3 Task n-1Task 1

VM 1

VM 2 VM 3

Cost Task
completionrate

VM 4 VM 6

VM 5

Data center 1

User 1 User 2 User 3 User 4...

Task 4 Task 5 ... Task n

Payoff functions
Energy 

consumption
Resource 
utilization



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 11, November 2022                        3569 

Now, we can define the basic game model as a triple { , , ( ) }i i WY W p E ∈= , where {1, 2}W =  
is set of players (service provider and user), p  is the scheduling strategy. And iE  is the payoff 
function of player i . 

(1) Players: We consider the participants in the scheduling process as players, i.e., users 
and service providers. 

(2) Strategy: In this game model, a strategy represents a scheduling solution, and the players 
adjust their strategies by changing the correspondence between tasks and virtual machines. 
Since a many-objective optimization algorithm will be used in this study to solve this game 
model, a chromosome is a solution, i.e., an element in the strategy set, and all the individual 
P's are combined to form the players' strategy set. The Table 1 is shown below. The yellow 
square represents the third task being given to the eighth VM. 

 
Table 1. Player strategy set 

 1 2 3 4 5 ... 198 199 200 
P1 5 7 8 5 3  12 2 10 
P2 ... ... ... ... ... ... ... ... ... 
... 7 14 9 3 3 ... 1 13 8 

PN 1 5 11 15 8 ... 2 6 4 
 
(3) Payoff function: Unlike single-objective games, we design models in which each player 

has two objectives that they want to optimize. The payoff function of service providers is 
expressed as 1U , while the user is 2U . The basic framework is defined as: 

 
1

( )
( )

EC p
U

RU p


= 
  

(1) 

 
2

( )
( )

C p
U

S p


= 
  

 (2) 

In this model, each player has two different payoff functions, and they take into account 
various factors to improve their own payoff. Therefore, the following section will introduce 
the service provider decision model and the user decision model to detail the specific 
manifestations of each player's payoff functions. 

2.2 The Service Provider Decision Model 
As a participant in the game, the service provider needs an explicit model to determine the 
energy consumption and resource utilization during the game process. Therefore, in this 
section, we will specify the two objectives of the game. 

(1) energy consumption 
During the scheduling process, whether the cloud service provider is performing a task or 

is idle, it is imperative that energy is consumed, which is a cost to the service provider, and 
less energy is more profitable to the service provider. Referring to [31], let E  and S  represent 
the energy consumption per time unit when the VM is executing a task or idle, respectively. 
Hence, the energy consumed for a complete scheduling process can be calculated as: 

 
,

h

i,exe i exe
i=1

EC (vm E +(t - vm ) S)= × ×∑  (3) 

 
,

h

i exei=1
t = max vm  (4) 
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where t  represents total scheduling time, i,exevm  reflects the execution time of the i -th 
virtual machine, and the total amount of virtual machines is h . 

(2) resources utilization 
As the provider of resources in the scheduling process, the extent to which VM resources 

are utilized is directly related to their interest. We define the resource utilization by the time 
spent per virtual machine performing a task, which is calculated by calculating the ratio of the 
execution time of each virtual machine to the total scheduling time and then taking the average. 

 The specific formula is shown below. 
 ,1 h

i exe

i=1

vm
RU =

h t∑  (5) 

2.3 The User Decision Model 
We can use three parameters to abstract and depict a task as ( jf , jl , ju ), where jf , jl , ju  
represents the input size, file size and output size of the j -th task, respectively. After the task 
is received by the cloud server, the task will be assigned to different VMs for execution. A 
task being assigned to VMs with different mips will affect the task’s execution time and the 
bandwidth will affect its transmission time. Accordingly, with the bandwidth ,i jB  and mips 

,i jM  of the j -th task assigned to the i -th VM, the i -th task’s transmission and execution time 
is shown in (6) and (7), respectively. 

Based on this basic information, we now move on to the user's payoff functions. 
(1) cost 
Typically, we use the transmission time and execution time of a task as a basis for 

evaluating the cost required to perform the task. In other words, the cost incurred by the user 
increases with task execution and transmission time, given a certain transmission cost bP  and 
an execution cost mP . Based on this principle, one of the payoff functions in the game is 
derived as: 

 
, ,

1
( )

n

j tran b j exe m
j

C t P t P
=

= × + ×∑
 

           (8) 

(2) task completion rate 
If a task can be completed before the expected time, the user will receive a higher benefit, 

and the user will be more satisfied. If we use k  to represent the total number of tasks to achieve 
the desired time, the ratio of k  to the overall number of tasks n  can be used to calculate the 
task completion rate, as shown in (9). 

 
0

0100kS
n

= ×
 

 (9) 

We now have the payoff functions for each player. While the user wants to spend less 
money and complete tasks more quickly, the service provider wants to use resources more 
efficiently while consuming less energy. Therefore, we formulate the task scheduling model 
based on the bi-objective game (TSBOG) as follows: 
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To solve the TSBOG, we will introduce a many-objective algorithm that we developed. 

3. Proposed Method 
In this section, the many-objective evolutionary algorithm based on a partitioned collaborative 
selection (MaOEA-PCS) is initially introduced, then we provide a thorough description of the 
environment selection strategy. Finally, based on the model features, we create a new 
crossover and mutation operator as a strategy update mechanism for players. 

3.1 The Framework of The MaOEA-PCS 
The Algorithm 1 demonstrates the fundamental structure of MaOEA-PCS. To start with, the 
procedure begins with a randomly generated population of size N  and a set of reference points 
Z , and then the algorithm starts into iterative optimization. The initial population is used as 
input for matching selection, then child populations are generated by traditional genetic 
operators including crossover and mutation [32]. Finally, the child populations will be used as 
input for environment selection along with the parent populations, and a partitioned solution 
selection strategy is used for choosing the best solutions into the next generation. When the 
current number of iterations G  surpasses the maximum number of iterations maxG , MaOEA-
PCS will come to an end. 
 

 Algorithm 1: The framework of the proposed MaOEA-PCS 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

Input: the population size N , the maximum number of iterations maxG  
Output: the optimization results 
Generating the initial population 0P  
Generate a set of reference points Z  
While maxG G<  

 tQ = MatingPool ( 0P ) 
    tQ = Crossover mutation operators（ tQ ） 
    0t tR P Q= +  

1tP+ = Environment selection strategy pool（ tR ） 
End 

3.2 The Partitioned Collaborative Selection Strategy (PCS) 
It is well known that the goal of environment selection is to choose individuals who own 
excellent convergence and diversity for the next generation, and it frequently serves as a vital 
role in an algorithm. Additionally, as the objective dimension increases, numerous non-
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dominated solutions will be generated during the optimization process, leading to an 
exponential increase in selection pressure as well. Thus, how to select high-quality offspring 
is then the question we need to address. In our design, we associate each solution with the 
reference vector closest to it, so that the reference vector naturally decomposes the solution 
space into many small spaces, ensuring a diversity of solutions. We then express convergence 
in terms of the distance from an individual to an ideal point, so that it is possible to choose a 
group of solutions with splendid convergence and diversity by simply choosing the individual 
with the best convergence in each small space. The Fig. 2. below shows a simple example of 
how to select a solution. 
 

 
Fig. 2. The process of environment selection 

 
The points in the yellow circle indicate individuals associated with the vector 1v  and the 

points in the blue circle indicate individuals associated with the vector 2v . Compared with the 
other points in the circle, points A  and B  are the closest to the ideal point O , which means 
they have better convergence. Hence, these two points are selected to enter the next generation. 

This strategy balances the convergence and diversity of the population throughout the 
optimization process of the algorithm. Since the individuals assigned to the same reference 
vector contribute similarly to the diversity of the population, we can enhance the performance 
of the whole population by retaining only the individuals with the best convergence. Thus, our 
design improves the conflict between diversity and convergence in general. 

3.3 Crossover and Mutation Operators Based on Dynamic Game（DGame） 

We consider the task scheduling problem as a game and decide to solve it using an 
optimization algorithm. Obviously, the players change their strategies corresponding to the 
crossover and mutation operators. In the previous sections of the game model analysis, we 
designed a bi-objective function for the players of the game as their respective payoff functions, 
whereas, during the game, players also need a strategy update mechanism to continuously 
respond to the strategies of other players. Therefore, we designed a crossover and mutation 
operator suitable for TSBOG to obtain a mutually satisfactory solution. Finally, we apply the 
game-based crossover and mutation operators to the many-objective optimization algorithm 
to settle the TSBOG and demonstrate the effectiveness of this method in the experimental 
section. 
 

B

A

O
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 Algorithm 2: The crossover operator 
1 
 

2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

Input：the decision variables of population 
Output：offspring population 
Generate two random numbers a , b  
Record the value of the objective functions before the crossover 
For i x=   /* x  is the number of cloudlet*/ 

Generate a random number r 
If 0.9 / 2r <  

The a  and b  individuals start crossing in x  gene positions 
End 
Calculate the value of the objective function 
If the player is the service provider 
   If after (EC)>before (EC) && after (RU)<before (RU) 
       Recovery strategy before crossover 
   End 
else 
   If after(C)>before(C) && after(S)<before(S) 
       Recovery strategy before crossover 
   End 
End 

End 

  
Algorithm 3: The mutation operator 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

Input：the decision variables of population 
Output：offspring population 
Generate a random number a   /* a  is Individual mutation probability */ 
If 0.1/ 2a <  

Keep a record of the objective functions’ value prior to the mutation 
For i N=   /* N  is the population size*/ 

Generate a random number b  
If 0.5b <  

Mutation at gene position i  
End 
Calculate the objective functions’ value 
If the player is the service provider 

            If after (EC)>before (EC) && after (RU)<before (RU) 
                 Recovery strategy before crossover 
            End 

Else 
            If after(C)>before(C) && after(S)<before(S) 
                 Recovery strategy before crossover 
            End 

End 
End 

End 
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As shown in Algorithm 2, after the player starts the crossover operation, it will first 
generate two random numbers, which represent two individuals in this crossover, and then 
start selecting the genetic to execute the crossover. The specific code is in lines 5-9 of 
Algorithm 2. Once the crossover is complete, the player needs to determine whether the 
individual before the crossover dominates the individual after the crossover; if it does, it means 
that the player's action does not give him or her a greater interest, and then the player will 
recover to the previous scheduling strategy. The same is true for the mutation operation. Each 
player performs both operations successively, and this strategy ensures that the players' actions 
are all in the direction of good. The whole game is manifested in the Fig. 3 below. 

 

 

Fig. 3. The flowchart of player game 
 

The service provider first begins to act according to Algorithms 2 and 3, and then the user 
chooses their own action in response based on the service provider's strategy. After both have 
completed their actions, the algorithm enters environment selection and mating selection until 
it enters the crossover and mutation operation once more. 

4. Performance Evaluation 
In this section, through numerical experiments as well as box plot analysis, we validated the 
effectiveness of the strategies and methods proposed in this study. First, we test the 
convergence of MaOEA-PCS and verify its performance on the test functions DTLZ1-7. In 
addition, we contrast MaOEA-PCS’s performance in solving TSBOG with four other many-
objective optimization algorithms, as well as give evidence of the effectiveness of our 
proposed crossover and mutation operators based on the dynamic game and TSBOG. 

4.1 Simulation Settings 
To assess the efficacy of the MaOEA-PCS, we run it in PlatEMO [33] using MATLAB 
R2018a. The simulations were conducted on an AMD Ryzen 7 5800H, 3.20 GHz PC with 
16GB RAM. For simplicity without losing generality, we consider the task scheduling 
environment consisting of 200 tasks, 15 virtual machines and 3 data centers. The task length, 
file size and output size can be described as the arithmetic progression with a first term of 
1000,300,150 and a tolerance of 100,15,10, respectively. The parameters of the virtual 
machine are manifested below. 
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Table 2. The VM Parameters 
parameters value 

Bw (bit) [1024-3072] 
MIPS (mips) [400-2000] 
Ram (MB) [512-3072] 
cpu_cost [0.03-0.09] 
bw_cost [0.01-0.03] 

4.2 Approaches 

4.2.1 The Inverted Generational Distance (IGD) 
IGD [34, 35], as a performance metric, is often used to assess algorithm diversity and  
convergence. It evaluates the effectiveness of an algorithm by taking points uniformly from 
the true Pareto front and calculating and averaging the shortest distance between these points 
and the true solution obtained by the algorithm. In general, a lower value of IGD, we can obtain 
the superior the algorithm's overall performance. 

 

1
| |

k

i
i

dis
IGD

k
==
∑

 
(11) 

where k  represents the number of solutions in the true Pareto front, while idis  stands for 
the nearest Euclidean distance from the i -th point of the true Pareto front to known true 
solutions. 

4.2.2 Comparison Algorithms and Parameter settings 
The performance of the MaOEA-PCS will be compared with the four most advanced 
approaches. To make the experimental results more reliable, all key parameter settings of 
NSGAIII, RVEA, GrEA and HMaPSO were consistent with the original reference. Besides, 
the parameters when all five algorithms solve the TSBOG are set as shown in Table 3. 

NSGAIII[36]: As a classical many-objective optimization algorithm, it can solve NP-hard 
problems efficiently. The algorithm improves population diversity through a reference point 
strategy and non-dominated ranking ensures population convergence. 

RVEA[37]: To dynamically coordinate the convergence and diversity of the many-
objective optimization algorithms, an angle penalty distance is provided. 

GrEA[38]: Similar to the idea of reference points, the algorithm maintains a wide and even  
distribution of solutions through grid dominance and grid congestion. 

HMaPSO[39]: The authors chose differential evolution operators, simulated binary 
crossover operators, and particle swarm operators as a pool of selection strategies to produce 
excellent solutions, achieving satisfactory results in balancing convergence and diversity. 

 
Table 3. The Parameters Settings 
parameters involved value 

The number of objectives 4 
Population size 100 

Crossover probability of each player 0.45 
Mutation probability of each player 0.05 

 

javascript:;
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4.3 Performance of MaOEA-PCS 

4.3.1 The Convergence of Algorithms 
An experimental analysis of the number of iterations of the algorithm was carried out for the 
purpose of determining the MaOEA-PCS's convergence limit. The specific experimental steps 
were to record the objective values every 100 generations and to take the average of these 
objective values to plot the results as shown below. 

 
Fig. 4. Convergence of MaOEA-PCS 

 
Distinctly, when fewer than 200 iterations have been completed, MaOEA-PCS converges 

more rapidly. Then, when the number of iterations ranges from 200 to 800, the rate of 
convergence decreases and the objective value fluctuates. And upon 800 iterations it is close 
to convergence and the objective value is basically unchanged. Therefore, if not otherwise 
mentioned, we limited the number of iterations for all methods in the following tests to 800. 

4.3.2 The Results and Discussion in DTLZ Problems  
To show off how well the MaOEA-PCS performs, DTLZ1-DTLZ7 are selected as the test 
functions for the experiments in this paper. In the experiments, we tested the selected five 
MaOEAs (i.e., NSGAIII, RVEA, GrEA, HMaPSO, and MaOEA-PCS) in the 4, 6, 8, 10, and 
15-dimensional objective space of the benchmark problem, and the stopping criterion was set 
at 1,000 generations. As suggested in [40], in addition to setting the population sizes in the 
DTLZ test function to 120, 132, 156, 275, 135 respectively, we used the IGD values described 
in the previous subsection to measure the experimental results, and the Table 4 below shows 
the IGD values obtained after 30 independent runs of all algorithms. The table's "+," "-," and 
"=" symbols signify that the comparison algorithms are better, worse, or approximately the 
same as those obtained by MaOEA-PCS, and the bolded fonts and gray background are the 
best for the different test cases.  
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Table 4. The five algorithms’ IGD results on the DTLZ 
Problem M NSGAIII RVEA GrEA HMaPSO MaOEA-PCS 

DTLZ1 

4 5.6812e-1 (4.14e-1) = 6.0222e-1 (3.28e-1) = 3.3982e-1 (2.28e-1) = 1.1525e+0 (9.51e-1) - 4.5346e-1 (2.47e-1) 

6 1.0835e+0 (5.07e-1) - 5.2643e-1 (2.60e-1) = 1.0085e+0 (4.51e-1) - 9.7151e-1 (8.34e-1) - 4.8753e-1 (2.29e-1) 

8 2.1039e+0 (8.36e-1) - 5.6357e-1 (4.29e-1) = 1.4068e+0 (6.52e-1) - 1.2709e+0 (1.16e+0) - 4.8745e-1 (2.57e-1) 

10 3.0605e+0 (1.03e+0) - 9.0454e-1 (3.36e-1) = 3.4942e+0 (1.56e+0) - 1.5346e+0 (7.69e-1) - 9.4593e-1 (4.77e-1) 

15 1.0831e+0 (5.60e-1) - 5.4461e-1 (3.72e-1) - 1.2808e+1 (1.15e+1) - 1.8258e+0 (2.17e+0) - 2.5490e-1 (7.44e-2) 

DTLZ2 

4 1.2372e-1 (5.80e-4) = 1.2355e-1 (5.77e-4) = 1.3540e-1 (2.60e-3) - 1.4459e-1 (2.33e-3) - 1.2368e-1 (1.58e-3) 

6 2.7404e-1 (4.45e-3) - 2.5931e-1 (1.33e-3) - 2.5838e-1 (1.45e-3) - 2.6994e-1 (2.08e-3) - 2.5281e-1 (6.50e-3) 

8 3.7252e-1 (3.03e-2) - 3.2916e-1 (2.60e-3) + 3.9698e-1 (1.52e-2) - 3.7837e-1 (6.17e-2) - 3.5359e-1 (2.60e-2) 

10 5.4180e-1 (6.30e-2) - 4.2325e-1 (6.85e-3) - 4.1581e-1 (4.17e-3) - 4.5289e-1 (5.73e-2) - 3.9641e-1 (5.49e-3) 

15 6.6382e-1 (2.42e-2) + 5.9405e-1 (1.15e-2) + 6.0000e-1 (2.70e-2) + 8.4910e-1 (6.97e-2) - 8.1785e-1 (1.54e-1) 

DTLZ3 

4 2.1658e+1 (8.05e+0) = 2.2045e+1 (6.32e+0) = 1.2757e+1 (4.04e+0) + 5.7088e+1 (2.57e+1) - 2.1141e+1 (8.40e+0) 

6 4.6421e+1 (1.18e+1) - 2.2764e+1 (6.26e+0) = 3.8016e+1 (8.73e+0) - 4.5909e+1 (2.84e+1) - 1.9921e+1 (4.58e+0) 

8 6.8336e+1 (2.06e+1) - 2.5207e+1 (9.94e+0) = 7.9468e+1 (1.97e+1) - 4.0154e+1 (2.22e+1) - 2.8354e+1 (7.79e+0) 

10 1.0470e+2 (1.82e+1) - 5.0757e+1 (1.17e+1) - 1.9308e+2 (4.60e+1) - 4.5864e+1 (1.79e+1) = 4.5071e+1 (1.09e+1) 

15 5.3669e+1 (1.11e+1) - 1.8169e+1 (6.28e+0) = 2.2736e+2 (7.06e+1) - 4.4594e+1 (3.01e+1) - 1.5441e+1 (6.67e+0) 

DTLZ4 

4 2.2370e-1 (1.54e-1) - 1.2415e-1 (9.03e-4) + 2.0067e-1 (1.52e-1) - 2.0158e-1 (1.59e-1) - 1.3837e-1 (6.11e-2) 

6 3.0550e-1 (7.21e-2) - 2.7382e-1 (4.16e-2) + 2.7192e-1 (5.98e-2) + 4.1598e-1 (1.55e-1) - 2.8120e-1 (6.08e-2) 

8 4.3357e-1 (8.45e-2) - 3.5451e-1 (2.67e-2) - 3.6560e-1 (5.23e-3) - 6.0269e-1 (1.44e-1) - 3.5058e-1 (2.19e-3) 

10 5.6613e-1 (3.81e-2) - 4.6562e-1 (4.92e-3) - 4.2140e-1 (2.97e-3) - 5.7129e-1 (6.85e-2) - 4.1179e-1 (2.43e-3) 

15 6.9886e-1 (3.78e-2) - 6.3562e-1 (7.99e-3) - 5.9200e-1 (7.73e-3) + 8.0173e-1 (9.94e-2) - 5.9236e-1 (2.16e-2) 

DTLZ5 

4 5.6211e-2 (1.52e-2) + 1.7157e-1 (2.82e-2) = 8.4829e-2 (1.52e-2) + 2.9225e-2 (4.19e-3) + 1.8230e-1 (1.18e-1) 

6 2.3853e-1 (6.89e-2) - 2.0710e-1 (8.63e-2) - 1.7552e-1 (3.69e-2) = 1.3236e-1 (6.63e-2) + 1.6850e-1 (6.85e-2) 

8 1.8160e-1 (4.69e-2) = 3.6100e-1 (5.96e-2) - 2.6682e-1 (5.93e-2) - 5.2885e-1 (2.80e-1) - 1.6546e-1 (4.66e-2) 

10 1.9611e-1 (3.67e-2) - 3.5755e-1 (9.39e-2) - 3.0917e-1 (6.19e-2) - 7.1258e-1 (2.18e-1) - 1.3221e-1 (2.61e-2) 

15 3.1378e-1 (5.34e-2) + 4.4826e-1 (2.36e-1) = 5.1163e-1 (8.72e-2) - 8.8680e-1 (9.03e-2) - 3.7799e-1 (1.41e-1) 

DTLZ6 

4 5.3376e-1 (4.02e-1) - 2.2835e-1 (2.10e-1) - 1.7468e-1 (1.50e-1) - 2.2971e-2 (4.82e-3) + 1.0377e-1 (3.71e-2) 

6 3.6807e+0 (6.47e-1) - 3.9098e-1 (2.71e-1) - 5.5307e-1 (3.37e-1) - 2.8653e-1 (2.97e-1) = 1.8411e-1 (6.57e-2) 

8 5.3645e+0 (5.31e-1) - 5.7557e-1 (4.45e-1) - 4.4754e+0 (4.90e-1) - 6.8873e-1 (2.61e-1) - 2.1317e-1 (1.38e-1) 

10 6.6821e+0 (4.91e-1) - 1.5198e+0 (5.83e-1) - 3.8523e+0 (4.08e-1) - 8.2421e-1 (2.65e-1) - 4.9896e-1 (3.42e-1) 

15 5.2996e+0 (7.13e-1) - 9.2381e-1 (5.19e-1) - 3.5937e+0 (4.72e-1) - 8.9884e-1 (3.19e-1) - 3.0256e-1 (1.94e-1) 

DTLZ7 

4 3.0964e-1 (6.41e-2) + 4.5644e-1 (7.53e-2) = 1.6656e-1 (9.88e-3) + 1.7336e-1 (8.55e-2) + 4.6473e-1 (1.49e-2) 

6 8.9507e-1 (8.20e-2) + 1.0593e+0 (8.17e-2) + 5.5716e-1 (5.11e-2) + 4.7748e-1 (1.35e-1) + 2.4220e+0 (4.34e-1) 

8 5.2329e+0 (9.15e-1) - 1.7508e+0 (8.58e-1) + 1.2626e+0 (2.23e-1) + 8.6508e-1 (2.01e-1) + 3.9665e+0 (1.01e+0) 

10 1.4022e+1 (1.59e+0) - 3.4298e+0 (1.57e+0) + 7.3786e+0 (1.13e+0) - 1.7599e+0 (6.60e-1) + 4.1651e+0 (1.21e+0) 

15 1.7369e+1 (1.61e+0) - 4.6752e+0 (2.15e+0) = 1.8970e+1 (1.37e+0) - 3.3381e+0 (7.85e-1) + 4.4054e+0 (1.34e+0) 

 
Observing the above Table 4, it is evident that out of the 35 test instances, the MaOEA-

PCS algorithm obtained 16 optimal values, HMaPSO obtained 7, and performed exceptionally 
well on DTLZ7, while the classical RVEA, GrEA, and NSGAIII obtained 6, 5, and 1 optimal 
value in that order. On DTLZ1, MaOEA-PCS obtains 3 optima solutions and performs 
similarly to GrEA and RVEA in dimensions 4 and 10, indicating that this algorithm can solve 
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such problems well in all dimensions. On DTLZ2-4, MaOEA-PCS obtained 2-3 optima 
solution in all 5 test instances of each problem. It is clear that the MaOEA-PCS algorithm has 
an obvious advantage in dealing with problems with objective dimensions of 8, 10 and 15, 
which may be due to the fact that our proposed PCS strategy reduces the selection pressure of 
evolutionary processes. Furthermore, on DTLZ5, both MaOEA-PCS and HMaPSO obtained 
two optimal solutions, but it can be seen that HMaPSO is more suitable for solving such 
problems in low dimensions, while MaOEA-PCS is more suitable for solving in high 
dimensions. And the MaOEA-PCS performed exceptionally well on DTLZ6, obtaining 
optimal solutions in dimensions 6, 8, 10 and 15, while on DTLZ7, MaOEA-PCS did not obtain 
any optimal solution. Based on the problem properties, it is presumed that MaOEA-PCS is 
weak in solving such problems with irregular Pareto front. Therefore, comparatively speaking 
to the other four evolutionary algorithms, the MaOEA-PCS solution put forward in this 
research provides a considerable advantage in handling the benchmark testing problem. 

4.3.3 The Validity of DGame and TSBOG 
To verify the validity of our proposed DGame, we set the operators in each of the five 
algorithms to run TSBOG with the simulated binary crossover (Eareal) and the DGame 
operator. We still use box plots to analyze the experimental results, which are shown below. 
 

  
(a) The energy consumption (b) The resource utilization 

  
(c) The cost (d) The task completion rate 
Fig. 5. The box plot comparison of two operators in four objectives. 
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The results achieved with the EAreal operator are shown in gray box plots, whereas the 
results with the DGame operator are shown in red box plots. As can be seen, all algorithms 
show a significant improvement in optimization on most objectives, but the magnitude of 
optimization on some objectives is not significant (e.g. task completion rate for the GrEA 
algorithm), probably because both sides of the game focus only on their own objectives during 
the evolutionary process, and therefore some solutions in favor of the other side are bound to 
be lost in the scheduling process. 

Additionally, the use of different operators represents a comparison between the TSBOG 
and the ordinary many-objective optimization model. Based on the above analysis, we can 
demonstrate that the TSBOG performs better and that a better scheduling solution can be 
obtained for the same number of iterations. 

4.3.4 The Effectiveness of The Algorithm Solving Model 
To illustrate the distribution of individuals when solving TSBOG for different algorithms, Fig. 
6 shows box plots of the optimization outcomes for each objective function and the data 
distribution. From the figures, we can obtain the maximum, minimum, mean, median, and 
discrete values for this set of data. 

 

  
(a) The energy consumption (b) The resource utilization 

 
 

(c) The cost (d) The task completion rate 

Fig. 6. The box plots result of six algorithms in four objectives 
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In terms of energy consumption, the overall box size of MaOEA-PCS is smaller than the 
other four algorithms, indicating that MaOEA-PCS has better convergence of the solution set. 
The median and mean are close to RVEA, which may be due to the fact that both use reference 
vectors to assist in solution selection. In terms of resource utilization, MaOEA-PCS has the 
optimal maximum, median, and mean values, indicating that PCS can obtain better 
optimization results. In addition, it is effortless to obtain that MaOEA-PCS performs better 
than the other algorithms in box size and maximum value in user cost. However, it is not as 
good as GrEA in terms of minimum value, but GrEA has a larger box. This may be because 
GrEA's grid domination approach does not obtain good convergence. In terms of task 
completion rate, MaOEA-PCS still has the optimal box size and minimum value, indicating 
that our proposed algorithm converges better. In contrast, the box for the HMaPSO algorithm 
is too small, indicating that the integration strategy proposed by the algorithm change affects 
the diversity of solutions. 

In summary, TSBOG's effectiveness is proven, and MaOEA-PCS can give a better result 
in the DTLZ test set and TSBOG. In addition, DGame can productively improve the 
algorithm's optimization of the model. 

5. Conclusion 
In this paper, we consider the process of deciding the task scheduling strategy between users 
and service providers as a game, and propose a task scheduling model based on a bi-objective 
game, i.e. service providers focus on energy consumption and resource utilization, and users 
focus on cost and task completion rate. Then, we design a many-objective evolutionary 
algorithm based on a partitioned collaborative selection strategy to solve this model. 
Additionally, we redesign a crossover and mutation operator based on dynamic game as the 
player's strategy update mechanism. Finally, through a series of experiments we test the 
convergence of MaOEA-PCS and demonstrate that the algorithm performs well in the DTLZ 
test set as well as in solving the TSBOG model. Furthermore, we verified the performance of 
DGame and TSBOG by comparing the DGame operator with the traditional crossover operator.  

In the future, we will further consider the real-time of task arrivals and build a dynamic 
multi-objective scheduling model. In addition, the extension of independent tasks to 
workflows is also an important issue worth investigating. 
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